Improvements to the IBM HUB5E System

Jing Huang, Brian Kingsbury, Lidia Mangu, George Saon, Geoffrey Zweig

- Michael Picheny
- Peder Olsen, Ramesh Gopinath, Vaibhava Goel, Karthik Visweswariah

Outline

- Last year's evaluation system
- Current system
- Distribution function matching adaptation
- Extended maximum likelihood linear transform (EMLLT)
- Implicit lattice MMI training
- Conclusion

Last year's evaluation system

Current system

rescoring Moved from multi-pass stack decoding to Viterbi lattice generation and

- $1.\,$ Lattices generated at the SAT+FMLLR level using word-internal AM and 2-gram LM
- 2. Expanded to 3-grams and left cross-word acoustic context and pruned
- Rescored and pruned with progressively more accurate models (4-gram LM, lattice-MLLR adapted AM)
- 4. Turned into confusion networks and combined

CDF matching adaptation

Introduced by [Dharanipragada & Padmanabhan'00]

Distribution function (or CDF) of a continuous r.v. X:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} p(t)dt$$

Empirical CDF given training samples x_1, \ldots, x_N :

$$F_N(x) = \frac{1}{N} \sum_{i=1}^N \theta(x - x_i)$$

- each dimension independently <u>Idea</u>: match the empirical test CDF to the empirical training CDF for
- Related to the Gaussianization technique [Chen & Gopinath'00]

CDF matching adaptation (cont'd)

- ullet Remark: $F_N(x_i) = rac{rank(x_i)}{N}$
- $\mathcal{T} = \{x_1, \dots, x_N\}$ training data, F_N empirical training CDF
- $\mathcal{A} = \{y_1, \dots, y_M\}$ adaptation data, G_M empirical test CDF
- mapping $h: \mathcal{A}
 ightarrow \mathcal{T}$, $h = F_N^{-1} \circ G_M$. Then:

$$F_N(h(y_i)) = G_M(y_i), \qquad orall y_i \in \mathcal{A}$$

- 1. Sort the training data
- 2. Sort the test data
- 3. Replace each test sample y_i with the training sample $h(y_i)$
- 4. Decode training data !!!

Decoding results

Stack decoding:

39.4%	37.2%	24.4%	SAT+FMLLR+CDF+FMLLR
N/A	N/A	24.6%	SAT+FMLLR+CDF+FV
N/A	37.5%	24.4%	SAT+FMLLR+FV
39.9%	37.7%	24.6%	SAT+FMLLR
devset cellular	eval'98	eval'00	Model/Transform

Lattice rescoring:

36.1%	23.3%	SAT+FMLLR+CDF+FMLLR
36.6%	23.7%	SAT+FMLLR
eval'98	eval'00	Model/Transform

Extended maximum likelihod linear transforms (EMLLT)

Introduced by [Olsen & Gopinath'02]

Idea: model Gaussian precision matrices (inverse covariances) as

$$\mathbf{P}_i = \mathbf{A}\mathbf{\Lambda}_i\mathbf{A}^T$$

where

$$\mathbf{P}_i = \mathbf{\Sigma}_i^{-1} \in \mathbb{R}^{n \times n}, \ \mathbf{A} \in \mathbb{R}^{n \times N}, \ \mathbf{\Lambda}_i \in \mathbb{R}^{N \times N}, \ \mathbf{\Lambda}_i = \mathrm{diag}(\lambda_{i1} \dots \lambda_{iN})$$

and $n \leq N \leq n(n+1)/2$

- MLLT: N=n
- Full-covariance: N = n(n+1)/2

Decoding results

Courtesy of [Huang, Goel, Gopinath, Kingsbury, Olsen, Visweswariah'02]

Stack decoding swb'00 (MFCC features):

22.6%	23.6%	SAT+FMLLR+MLLR
23.1%	24.6%	SAT+FMLLR
25.2%	26.8%	VTLN
EMLLT	Diagonal	Model/Transform

Lattice rescoring eval'01 (PLP features):

Model/Transform	Diagonal	EMLLT
SAT+FMLLR	29.1%	28.4%
SAT + FMLLR + 4grm + MLLR	28.0%	27.2%

Implicit lattice MMI training

MMI objective function:

$$f(\lambda) = \sum_{k=1}^{K} \log \frac{P_{\lambda}(\mathbf{X}^{k}|\mathbf{W}^{k})}{\sum_{\mathbf{W}} P_{\lambda}(\mathbf{X}^{k}|\mathbf{W})P(\mathbf{W})}$$

where λ represents the means, variances and priors of the Gaussians

Compute the denominator statistics only for the paths existent in a lattice

Implicit lattice MMI training (cont'd)

- Previous approach:
- Create lattice using simpler models (e.g. x-word triphones, or wordinternal)
- Expand lattice to larger acoustic context (x-word quinphones, or leftcontext) and run Forward-Backward algorithm to accumulate counts
- Proposed method:
- Statically compile left-context, n-gram decoding graphs: minimization problem addressed in [Zweig, Saon & Yvon'02]
- Run Forward-Backward with pruning (instead of Viterbi) on resulting HMM network the

Decoding results

Trigram one-shot Viterbi decoding:

24.0%	MMI	
25.3%	JM	left
24.9%	MMI	
26.1%	ML	word-internal
eval'00	Training	Context

• Bigram lattice generation (1-best results):

	word-internal	Context
MMI	ML	Training
25.8%	27.7%	eval'00

Conclusion

Search

5% relative improvement

CDF matching adaptation

1-2% relative improvement

EMLLT

5% relative improvement

Implicit lattice MMI

5-7% relative improvement

